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a b s t r a c t 

Shape deformation is one of the fundamental techniques in geometric processing. One principle of de- 

formation is to preserve the geometric details while distributing the necessary distortions uniformly. 

To achieve this, state-of-the-art techniques deform shapes in a locally as-rigid-as-possible (ARAP) man- 

ner. Existing ARAP deformation methods optimize rigid transformations in the 1-ring neighborhoods and 

maintain the consistency between adjacent pairs of rigid transformations by single overlapping edges. 

In this paper, we make one step further and propose to use larger local neighborhoods to enhance the 

consistency of adjacent rigid transformations. This is helpful to keep the geometric details better and dis- 

tribute the distortions more uniformly. Moreover, the size of the expanded local neighborhoods provides 

an intuitive parameter to adjust physical stiffness. The larger the neighborhood is, the more rigid the 

material is. Based on these, we propose a novel rigidity controllable mesh deformation method where 

shape rigidity can be flexibly adjusted. The size of the local neighborhoods can be learned from datasets 

of deforming objects automatically or specified by the user, and may vary over the surface to simulate 

shapes composed of mixed materials. Various examples are provided to demonstrate the effectiveness of 

our method. 

© 2017 Elsevier Inc. All rights reserved. 
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. Introduction 

Shape deformation is a fundamental research area in com-

uter graphics. For character animation, skeleton based methods

re widely used [1,2] . Such methods however need the users to

ake extra effort to build the skeletons. Alternatively, some defor-

ation methods [3,4] take cages (simplified geometry enclosing

he deforming shapes) as proxies to deform the shapes. Again ef-

orts are needed to build cages. 

Compared with skeleton and cage based deformation methods,

urface based deformation methods are more intuitive and more

exible to model a variety of shapes, with no need to cope with

xtra proxies. Laplacian deformation methods [5–8] have been ex-

lored extensively for surface based deformation. The difference

etween the Laplacian coordinates of the deformed and the origi-

al shapes is minimized to keep the local geometric details. How-

ver, both the positional and rotational constraints for the defor-

ation handles are required for these methods to work. As shown

n [9] , positional and rotational constraints need to be assigned
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ompatibly to avoid artifacts. This is non-trivial and requires ad-

itional effort/expertise from the user. 

Another general approach to keep geometric details is to de-

orm shapes locally rigidly, just as rotating and translating shapes

lobally rigidly would not change their geometry. This principle is

odeled as an as-rigid-as-possible (ARAP) energy which has been

idely used in geometric processing. Based on this energy, Sorkine

t al. [10] present a mesh deformation method. Only positional

onstraints need to be specified at deformation handles. The local

otation of the deformed surface can be estimated automatically

uring the iterative optimization. This makes interactive modeling

uch easier and substantially reduces the effort of modeling tasks.

he ARAP deformation effectively preserves geometric features and

istributes distortions uniformly, which leads to more visually

leasing deformation results than previous methods. The ARAP de-

ormation formulation has also been integrated into various appli-

ations in geometry processing. The ARAP deformation method has

ecently been improved for efficiency [11] and effectiveness [12] . 

The mechanism of the traditional ARAP deformation [10] is

o keep geometric features by deforming the shape locally

igidly. To distribute distortions uniformly over surfaces, local

ransformation consistency is enforced based on 1-ring neighbor-

oods of vertices. As shown in Fig. 1 , the 1-ring neighborhoods

f adjacent vertices share a single edge, so the consistency
-rigid-as-possible shape deformation, Graphical Models (2017), 
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Fig. 1. The single overlapping edge of two adjacent 1-ring vertex neighborhoods. 
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constraint of neighboring rigid transformations is relatively weak.

As a result, ARAP deformation results behave as if they are made

of soft plastic material. 

In this paper, we further explore the ARAP energy. Our key ob-

servation is that expanding local neighborhoods will enlarge over-

lapping areas between adjacent vertices which helps to enhance

the coherence of local rigid transformations. As a result, the size

of local neighborhoods provides a feasible way to control the ap-

pearance of deformation. The larger the size is, the better the local

geometric details would be kept, or in other words, the material

will look more rigid. By varying this parameter, the appearance of

deformation ranges from softer plastic material with smaller lo-

cal neighborhoods to harder material such as iron. The former is

elastic and flexible, whereas the latter is more rigid and harder to

bend/stretch. Another advantage of such enhanced rigid transfor-

mation consistency is it reduces the variability of local rigid trans-

formations, and hence the optimization will converge with fewer

iterations. 

Real-world objects are often composed of different materials.

Our approach allows such situations to be well simulated by vary-

ing the neighborhood sizes across the objects to indicate desired

stiffness. Shapes with different local neighborhood sizes can be ef-

fectively optimized in a unified framework. 

The contributions of this work are summarized as follows: 

• We propose a rigidity controllable deformation method by us-

ing ARAP deformation with adjustable neighborhood sizes. By

using a local neighborhood size suitable to the material, our

method produces more natural deformation than state-of-the-

art methods. 

• Our unified framework allows varying local neighborhood sizes

across the surface, simulating objects made of materials with

different stiffness. Realistic deformation results are obtained for

such cases. 

• In addition to user specified neighborhood sizes, we also de-

velop an automatic method to set neighborhood sizes by ana-

lyzing a collection of deforming objects, such that the neighbor-

hood sizes are adapted to local stiffness. 

We review the most related work in Section 2 . The detailed al-

gorithm is described in Section 3 . Results and discussions are pre-

sented in Section 4 . Finally, limitations and future work are given

in Section 5 . 

2. Related work 

Shape deformation is an active research area in computer

graphics with a large amount of related research work. For com-

plete and detailed surveys please refer to [13–15] . In this section,

we review the work most related to ours. In order to simulate real-

istic shape deformation, the pioneer research work [16,17] deforms

the shapes according to the physical laws. These physically based

methods however are computationally intensive and the parame-

ters derived from physical rules cannot be adjusted intuitively. 
Please cite this article as: S.-Y. Chen et al., Rigidity controllable as
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To generate visually pleasing deformation results, geometric

etails should be preserved after the shape is deformed. One

ypical approach is to preserve the Laplacian differential coor-

inates [5–8] during the shape deformation. These differential

oordinates based methods need the user to specify compatible

ositional and rotational constraints for deformation handles. As

hown in [18] , incompatible constraints will introduce artifacts.

opa et al. [19] deform the shape with different material prop-

rties based on the deformation gradient method. Again, rota-

ional constraints of the deformation handles should be assigned.

ur method allows materials with different stiffness to be simu-

ated, while only requiring positional constraints at handles which

akes the modeling procedure much easier. For human body de-

ormations, Murai et al. [20] propose a sophisticated mathemati-

al model to learn parameters for simulating deformation dynam-

cs of soft human tissues. Compared with this work, our work uses

 simpler model and can deal with general shapes. 

Another approach to preserving geometric details is to keep

eformation rigidly. Global rigid transformation while being dis-

ortion free is not suitable when non-rigid deformation is in-

olved. Deforming shapes locally rigidly keeps geometric de-

ails and makes less distortion. This concept has been mod-

led as the as-rigid-as-possible (ARAP) deformation energy, which

as been widely used in geometric modeling, such as shape

nterpolation [21,22] and 2D shape manipulation [23] . Sorkine

t al. [10] propose a 3D mesh deformation method by using this

RAP technique. This state-of-the-art work often deforms shapes

ith visually pleasing results. Optimizing the ARAP energy in the

 1 norm instead of the traditional L 2 norm tends to distribute

he distortions sparsely to fewer places thus keep geometric fea-

ures better for most areas [24] . Zohar et al. [12] augment the

RAP energy with a rotation difference term to improve smooth-

ess of relative rigid rotations (SR-ARAP). Gao et al. [25] blend sev-

ral reference shapes with the ARAP energy for data-driven mor-

hing. The ARAP based shape optimization framework has also

een used for shape registration [26] and parametrization [27] .

hao et al. [28] present a continuous ARAP energy formulation.

ased on optimizing ARAP energy in the 2-ring neighborhood, Gao

t al. [29] propose an approach to data-driven shape deformation.

or animation of articulated shape characters, the ARAP energy is

ntegrated into the linear skinning deformation method [30] . The

RAP energy has also been applied to dynamic shape reconstruc-

ion [31,32] . Yang et al. [33] consider adjusting deformation stiff-

ess using different neighborhood sizes. Their method however

s based on voxels, which suffers from high computational costs

hen the grid is dense, or is unable to represent deformations

t fine scales if the grid is coarse. Our method works directly on

eshes which also avoids the need of converting between meshes

nd voxels. We also propose a method to automatically learn adap-

ive neighborhood sizes. Recent progress has also been made to

peed up the ARAP deformation with GPU acceleration [11] and

he subspace technique [34] for interactive editing. In this paper,

e focus on improving the deformation effectiveness. 

. Algorithm 

Similar to traditional ARAP deformation, we assume that an in-

ut model is provided with a set of handles. The user then moves

he handles to desired locations and the algorithm produces a de-

ormed model which satisfies the handle constraints and keeps ge-

metric details. The fundamental spirit of the ARAP deformation

s to deform shapes locally rigidly. The traditional ARAP approach

nterprets the local area as 1-ring neighborhoods. Adjacent 1-ring

eighborhoods share a single common edge. This edge constrains

he consistency or smoothness of rigid rotations between adja-

ent transformations. Instead of using 1-ring neighborhoods, we
-rigid-as-possible shape deformation, Graphical Models (2017), 
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Fig. 2. (a) the 1-ring neighborhood edges of the center vertex, (b) the 2-ring neigh- 

borhood edges of the center vertex. 
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ropose to use general r -ring neighborhoods to define local areas,

o allow adjustable stiffness. 

.1. r-ring ARAP energy 

Let N ( k, r ) be the set of vertices and associated edges within

he r -ring neighborhood of vertex k , where a vertex j ∈ N ( k, r ) if

nd only if there exists a path connecting vertices k and j with the

umber of edges no more than r . An edge ( i, j ) ∈ N ( k, r ) if it can

e visited by a path containing up to r edges from the vertex k .

ig. 2 illustrates 1-ring and 2-ring neighborhoods respectively with

dges leading to these vertices highlighted. The vertex and edge

et N ( k, r ) is obtained efficiently using breadth-first search from

ach vertex k . The r -ring energy is defined as follows: 

 r (p 

′ , R ) = 

n ∑ 

k =1 

{ ∑ 

(i, j) ∈ N(k,r) 

w i j ‖ (p 

′ 
i − p 

′ 
j ) − R k (p i − p j ) ‖ 

2 

} 

, (1) 

here n is the number of vertices, p i is the vertex position in the

nput shape, p 

′ 
i 

is the vertex position after deformation, and R i 

s the rigid rotation to be optimized in each r -ring neighborhood.

 

′ = 

{
p 

′ 
i 

}
and R = { R i } represent the deformed positions and local

otation matrices for all the vertices. 

When r = 1 , this energy formulation is equivalent to the

tandard ARAP deformation [10] . w ij is the cotangent weight

hich helps to make the energy insensitive to surface discretiza-

ion [35] and is defined as: 

 i j = 

1 

2 

( cot αi j + cot βi j ) , (2)

here αij and β ij are two angles opposite to the edge ( i, j ). 

.2. Optimization framework 

Given the input model and the handle positions after deforma-

ion, we optimize the local rotation matrix R i and the deformed

osition p 

′ 
i 

for each vertex i iteratively. To make this tractable, two

lternating steps are applied in each iteration. In the global step,

iven the rigid rotations R i , we optimize the vertex positions p 

′ 
i 
,

nd in the local step, we optimize the rigid rotations R i with the

ertex positions p 

′ 
i 

fixed. To begin with, the rigid rotation for each

 -ring neighborhood is initialized with the identity matrix. We now

ive details for the global and local steps in the following subsec-

ions. 

.2.1. Global step 

Given the optimized rigid rotations R i , the r -ring ARAP energy

ecomes a quadratic function w.r.t. the deformed positions. The
Please cite this article as: S.-Y. Chen et al., Rigidity controllable as
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ptimal position for p 

′ 
i 

can thus be obtained by solving the linear

ystem 

∂ E r 
∂ p 

′ 
i 

= 0 : 

∂ E r 
∂ p 

′ 
i 

= 

∑ 

j∈ N(i, 1) 

( ∑ 

k :(i, j) ∈ N(k,r) 

2 w i j 

(
(p 

′ 
i − p 

′ 
j ) − R k (p i − p j ) 

)

+ 

∑ 

s :( j,i ) ∈ N(s,r) 

−2 w ji 

(
(p 

′ 
j − p 

′ 
i ) − R s (p j − p i ) 

)) 

, (3) 

here { k |( i, j ) ∈ N ( k, r )} is the vertex set containing all the vertices

hose r -ring neighborhood covers the edge ( i, j ). Since w i j = w ji ,
∂ E r 
∂ p 

′ 
i 

can be rewritten as 

∑ 

j∈ N(i, 1) 

2 w i j 

( 

2 d i j (p 

′ 
i − p 

′ 
j ) −

∑ 

k :(i, j) ∈ N(k,r) 

R k (p i − p j ) 

) 

, (4) 

here d ij is the number of elements in { k |( i, j ) ∈ N ( k, r )}. The linear

ystem 

∂ E r 
∂ p 

′ 
i 

= 0 is defined as 

 d i j 

∑ 

j∈ N(i, 1) 

w i j (p 

′ 
i − p 

′ 
j ) = 

∑ 

j∈ N(i, 1) 

w i j 

∑ 

k :(i, j) ∈ N(k,r) 

R k (p i − p j ) (5) 

This induces a linear system Ap 

′ = b . During deformation, as-

uming H is the set of handle vertices with user specified posi-

ional constraints. For vertex i ∈ H , the specified handle position is

 i . This is equivalent to having a hard constraint p 

′ 
i 
= c i . For each i

 H , the corresponding i th row and i th column of A will be set to

ero except for the diagonal element where A (i, i ) = 1 . The i th row

f b is set to c i . 

A is purely determined by the input model and the set of han-

le vertices, so it is a fixed matrix during interactive deformation.

ince A is symmetric and semi-definite, we apply Cholesky decom-

osition to A in advance and the linear system can be efficiently

olved to obtain vertex positions p 

′ 
by back substitution during the

ptimization step. Both the Cholesky decomposition and back sub-

titution are implemented by MATLAB which has been optimized

or parallel computing. 

.2.2. Local step 

Given the optimized vertex positions p 

′ 
, in the local step, the

igid rotation R i for each vertex i is optimized as follows. Let

 i = 

∑ 

( j,k ) ∈ N(i,r) w k j (p k − p j )(p 

′ 
k 

− p 

′ 
j 
) T . Similar to [10] , the optimal

otation can be obtained explicitly. We first apply singular value

ecomposition (SVD) to S i , giving S i = U i �i V 

T 
i 

. The optimized rigid

otation R i can be obtained as V i U i 
T . The sign of U i corresponding

o the smallest singular value should be changed when necessary

o make det R i > 0 . The rigid rotation optimization is independent

or each r -ring neighborhood, so this optimization can be straight-

orwardly accelerated in parallel by OpenMP. 

.2.3. Convergence condition 

In each global/local step, the energy E r is monotonically de-

reasing, so the optimization always converges to some local min-

ma. With different r , the value of the optimized energy is also dif-

erent. To set a consistent termination condition, we normalize the

nergy difference between the (t − 1) th iteration and the t th iter-

tion with the energy of the (t − 1) th iteration. The optimization

s terminated if the following condition is satisfied: 

E (t−1) 
r − E (t) 

r 

E (t−1) 
r 

< γ

or all the examples in this paper, the parameter γ is chosen as

0 −3 . 
-rigid-as-possible shape deformation, Graphical Models (2017), 
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Fig. 3. Deformation results of different neighborhood sizes ( r ). (a) the input shape, (b),(d),(f) the results with 1-ring (equivalent to ARAP deformation [10] ), 2-ring and 10-ring 

neighborhoods, (c),(e),(g) the color coded energy distribution of (b),(d),(f). 

Table 1 

Statistics of the deformation running times for the example in Fig. 3 . 

Ring number BFS (ms) Cholesky (ms) Global (ms) Local (ms) #Iterations Total time (s) 

1-ring 3 .65 26 .87 22 .96 2 .20 477 12 .03 

2-ring 8 .91 26 .65 24 .57 5 .45 201 6 .06 

4-ring 28 .68 19 .75 39 .11 20 .43 124 7 .43 

6-ring 63 .47 19 .02 69 .21 45 .95 63 7 .34 

10-ring 136 .09 19 .50 129 .17 103 .48 33 7 .70 
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3.3. Spatially varying rigidity 

Real-world objects are often composed of different materials

with different stiffness. Our approach allows such objects to be

simulated within a unified framework by using the r -ring ARAP

formulation with different r values specified for different regions.

The resulting energy with varying r can be optimized using the

same framework as described in Sections 3.2.1 and 3.2.2 . We fur-

ther developed an intuitive graphical user interface application to

help users specify different neighborhood sizes for different re-

gions. It provides a variety of tools. The user can select the cur-

rent r , and use a paintbrush tool to assign r to surface regions by

directly painting on the surface. Alternatively, the user may select

a region and use a flood fill (paint bucket) tool to assign r to the

whole selected region. A simple example is shown in Fig. 8 . The

bar is made with two different materials with the softer part ren-

dered in orange and the harder part in gray. As shown in the re-

sults, enlarging r increases rigidity. 

3.4. Learning spatially varying r from deforming shapes 

Instead of specifying r by manual painting, when a set of de-

forming shapes is available, we propose an automatic method to

assign suitable spatially varying r across the surface. Intuitively,

larger r leads to more rigid deformation, and thus tends to pre-

serve details better. However, when r is set to be too large, the

shape can be locally too rigid, and thus results in a large deforma-

tion error, which can be efficiently estimated using the as-rigid-as-

possible energy. 

Assume for each vertex k , we set the neighborhood size r k to

an integer in the range of [ r min , r max ]. We further assume that

M models are available, and the position of the i th vertex on the

m th model is denoted as p 

m 

i 
. We take the first model as the ref-

erence model, and for an arbitrary model m ( m = 2 , 3 , . . . , M), we

can work out the r -ring ARAP energy for vertex k as follows: 

E(k, r, m ) = 

∑ 

(i, j) ∈ N(k,r) 

w i j 

∥∥(
p 

m 

i − p 

m 

j 

)
− R k 

(
p 

1 
i − p 

1 
j 

)∥∥2 

We normalize the energy E ( k, r, m ) to make it scale invariant : 

˜ E (k, r, m ) = 

1 

A (k, r) 
E(k, r, m ) 

where A ( k, r ) is the sum of the Voronoi areas of all the vertices in

N ( k, r ) on the reference model. 

To measure the overall deformation for the k th vertex, we

take the mean 

˜ E (k, r, m ) as ARAP energy for vertex k with r -ring
Please cite this article as: S.-Y. Chen et al., Rigidity controllable as
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eighborhood: 

 ARAP (k, r) = 

1 

M − 1 

∑ 

2 ≤m ≤M 

˜ E (k, r, m ) 

To penalize locally non-rigid deformation, we favor larger r , and

ence introduce the non-rigid energy as: 

 non −rigid (k, r) = r max − r k 

For each vertex k , the neighborhood size r k is obtained by min-

mizing the energy combining both terms: 

 k = arg min r 

(
E ARAP (k, r) + ωE non −rigid (k, r) 

)
ω is a globally adjustable parameter to control the preference

f rigidity to deformation error. Thanks to the normalization, we

nd a default set of the parameters works well for a wide range

f shapes. We set r min = 1 , r max = 6 and ω = 0 . 3 in all our experi-

ents. 

. Results and discussions 

In this section, we show various deformation results using our

pproach including a single neighborhood size and mixed neigh-

orhood sizes, and compare our results with state-of-the-art defor-

ation methods. The experiments were carried out on a computer

ith an Intel i7-2600 CPU and 8GB RAM. We use yellow dots to

ndicate the deformation handles. 

Timing & convergence. As discussed before, the energy of our

eformation approach is monotonically decreasing so it always

onverges to some local minima. The running time of our method

ncludes the off-line step and the on-line step. The off-line step

nvolves the breadth first search (BFS) to obtain the r -ring neigh-

orhood N ( i, r ) for each vertex i , and the predecomposition of the

parse matrix A . These can be performed independent of the han-

le positions and thus only need to be performed once during the

nteractive deformation process. The online step mainly consists of

he time for global and local optimization. The detailed running

imes for the deformation example in Fig. 3 are shown in Table 1 .

ote that when 1-ring neighborhood is used, our method reverts

o the standard ARAP deformation [10] . The model involved con-

ains 1154 vertices. For the same model with different neighbor-

ood sizes r , the size of the linear system is the same, which is

qual to the number of vertices. As a result, the running times of

holesky decomposition, back substitution and SVD decomposition

re similar. The major differences are the times for using the BFS

o build r -ring neighborhoods, calculating the matrix S i in the lo-

al step and the vector b in the global step. With the increasing

eighborhood size r , the running times for BFS, local optimization
-rigid-as-possible shape deformation, Graphical Models (2017), 
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Fig. 4. Energy convergence curves of the example in Fig. 3 with (a) 1-ring, (b) 2-ring, (c) 10-ring. 

Fig. 5. The number of iterations ( y -axis) needed for convergence w.r.t. the neigh- 

bood size r ( x -axis), according to the same convergence condition. 

a  

d

 

s  

r  

v  

e  

n  

t  

f  

c  

1  

t  

t  

v  

w

 

f  

e  

v  

w  

0  

t  

v  

g

 

m  

t  

n  

l  

u  

i  

f  

w  

e  

e  

d  

s  

c  

u

 

s  

c  

5  

t  

p  

l  

t

 

c  

i  

m  

a  

T  

s  

i  

n

 

r  

p  

d  

s  

i

 

a  

m  

t  

m  

A  

c  

t  

I  

o  

m  

h  

b  

T  

t  
nd global optimization are increasing while the time for Cholesky

ecomposition is decreasing as shown in Table 1 . 

With increasing r , the material becomes more rigid. The con-

istency of adjacent rigid rotations is enhanced so the flexility of

igid rotations is reduced. Thus fewer iterations are needed to con-

erge. Fig. 4 shows how the r -ring ARAP energy converges over it-

rations for different neighborhood sizes. Fig. 5 further shows the

umber of iterations required for the energy to converge, based on

he same convergence condition ( Section 3.2.3 ). As it takes longer

or each iteration and the number of iterations reduces with in-

reasing r , the running times are fairly consistent from 2-ring to

0-ring. For the example in Fig. 3 the running time is between 6 s

o 7 s, which is about half of the time as traditional ARAP deforma-

ion (equivalent to setting r = 1 ). For the human shape with 12.5 K

ertices shown in Fig. 9 , the online optimization takes about 10.2 s

ith mixed r -ring neighborhood sizes. 

The running time for automatically learning neighborhood sizes

rom deforming model dataset is mainly spent on calculating gen-

ral ARAP energies with different neighborhood sizes around each

ertex, so is proportional to the vertex number of each model, as

ell as the total number of models. The running time is about

.68 ms per vertex per model, to calculate energies from 1-ring

o 6-ring neighborhoods. For the human shape in Fig. 9 with 12.5 K

ertices and 71 models, the one-off neighborhood size selection al-

orithm takes about 10 min. 

Results with global change of r . Fig. 3 demonstrates defor-

ation results with one end of the shape bent by 180 °. The

raditional ARAP deformation method (equivalent to using 1-ring

eighborhood) [10] produces self-intersection artifacts. With such

arge deformation, the distortions cannot be distributed sufficiently
Please cite this article as: S.-Y. Chen et al., Rigidity controllable as

http://dx.doi.org/10.1016/j.gmod.2017.02.005 
niformly. With larger neighborhood sizes, the rigid consistency

s strengthened. The distortions are propagated much more uni-

ormly. We show the deformation results with 2-ring and 10-ring

here no self-intersections are generated. To visualize how the en-

rgy varies locally over the surfaces and to account for the differ-

nce in absolute energy values, we show color coding of energy

ifference between adjacent r -ring neighborhoods. It can be clearly

een that in the traditional 1-ring case, significant energy change is

oncentrated on small regions, and the energy is distributed more

niformly with the increasing neighborhood size. 

Fig. 6 shows the deformation results with the same user con-

traints but changing neighborhood size r . The bar tends to be-

ome more rigid with increasing r . The neighborhood sizes (1-ring,

-ring, 10-ring and 15-ring) are chosen to demonstrate typical con-

rollable rigidity. The 1-ring deformation result looks like elastic

lastic material whereas the 15-ring deformation result looks more

ike metal. With a single adjustable parameter, the user can change

he material properties freely and intuitively. 

We show further example with substantial deformation and

ompare our results with state-of-the-art methods. The example

s shown in Fig. 7 , where our method produces a natural defor-

ation result while state-of-the-art methods produce results with

rtifacts, including self-intersections and over blended distortions.

hese examples demonstrate that by using a larger neighborhood

ize, our method can avoid deformation artifacts typically appear-

ng in existing methods which are induced by the local minimum

ature of optimization. 

Results with spatially varying neighborhood size r . Our algo-

ithm also allows the user to specify the material properties by a

aintbrush. As shown in Fig. 8 , the thin bar is painted with two

ifferent neighborhood sizes. The smaller neighborhood size r is

pecified for softer areas where more bending is allowed. With the

ncreasing r , the middle part of the bar tends to be more rigid. 

In Figs. 9–11 , the user specifies the rigidity of shape regions

ccording to the intrinsic properties. The joint area tends to be

uch more flexible for articulated shape deformation. As shown in

he results, the shape deformation results with mixed r are much

ore natural than the previous state-of-the-art methods [10,12,36] .

s highlighted in the yellow rectangles, deformation artifacts in-

luding self intersections, excessive twisting and unnatural dis-

ortions occur in the deformation results of previous methods.

n Fig. 9 , muscle contraction appears in the deformation results

f [10,12,36] which looks unrealistic. The bending areas of these

ethod in the arm fail to be located at elbow joints. The deformed

uman shape of our method is free of these artifacts. In Fig. 10 , the

ent index finger of [10] looks like elastic plastic without joints.

he thumb of [36] is squashed. With guiding rigidity distribution,

he deformation result of our method looks much more natural.
-rigid-as-possible shape deformation, Graphical Models (2017), 
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Fig. 6. Deformation results of different neighborhood sizes. (a) the input shape, (b) 1-ring result, (c) 5-ring result, (d) 10-ring result, (e) 15-ring result, (f) 20-ring result. 

Fig. 7. Comparison of deformation results. (a) the input shape, (b) ARAP deformation result [10] , (c) SR-ARAP deformation result [12] , (d) deformation result of [36] , (e) 

result of our approach with 6-ring neighborhood. 

Fig. 8. Deformation results of different neighborhood sizes. (a) the input shape, (b) mixed 3-ring and 2-ring, (c) mixed 4-ring and 2-ring, (d) mixed 6-ring and 2-ring. 

Fig. 9. Comparison of deformation results. (a) the input shape, (b) ARAP deformation result [10] , (c) SR-ARAP deformation result [12] , (d) deformation result of [36] , (e) 

r -ring neighborhoods specified by the user, (f) result of our approach with mixed r -ring neighboorhoods. 

Fig. 10. Deformation result comparisons. (a) the input shape, (b) deformation result of [36] , (c) result of ARAP deformation [10] , (d) neighborhood sizes r painted by the 

user, (e) deformation results with mixed r -ring neighborhoods. 
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Fig. 11. Deformation result comparisons. (a) The input shape, (b) SR-ARAP deformation results [12] , (c) deformation result of [36] , (d) ARAP deformation results [10] ,(e) 

neighborhood sizes r painted by the user, (f) deformation results with mixed r -ring neighborhoods. 

Fig. 12. Comparison of deformation with our automatic neighborhood size selection and alternative methods. (a) color coding illustrating the neighborhood size (1–6 cor- 

responding to blue to red), (b) SR-ARAP deformation results [12] , (c) deformation results of [36] , (d) ARAP deformation results [10] , (e) our deformation results using the 

learned adaptive neighborhood size. 
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imilar unnatural distortions of [10,12,36] also appear in Fig. 11 .

ompared with these methods, our method makes natural and rea-

onable deformations. 

Results with automatically selected neighborhood size r . We

ow show the results obtained using automatic neighborhood size

election, and compare them with alternative methods. For this

urpose, we need a collection of shapes with the same connec-

ivity, which many existing datasets satisfy (or can be achieved by

onsistent remeshing). 

In Fig. 12 , we show results based on the SCAPE (Shape Com-

letion and Animation of People) dataset [37] of deforming hu-

an body. The automatically selected neighborhood sizes using the

hole dataset of 71 models are illustrated using color-coding in

ig. 12 (a). It effectively identifies the rigid parts (such as the head)

nd regions which are locally non-rigid (such as joints) and assigns

uitable neighborhood sizes. We show three deformation examples

ith user-specified handles highlighted. For all examples, results of

ur method ( Fig. 12 (e)) with learned adaptive neighborhood sizes

reserve details for the rigid parts well while allowing non-rigid

arts to deform flexibly to produce natural deformation results. On

he contrary, the three state-of-the-art methods [10,12,36] do not

reserve the rigid parts (e.g. legs) and produce distortions around

oints. 
1  

Please cite this article as: S.-Y. Chen et al., Rigidity controllable as
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To test the influence of the model database on the results, we

urther use the first 7 and 30 models from the SCAPE dataset. The

esults are shown in Fig. 13 . When the number of examples is

mall (with only 7 models), it is not sufficient to capture all the

ossible non-rigid deformations. As a result, the deformed right leg

ones show clear bending as the joint is not properly recognized.

hen 30 models are used for learning, the neighborhood size dis-

ribution is very similar to using the full dataset, and the result

ooks plausible. 

Another example is shown in Fig. 14 , using the horse dataset

rom [38] . Existing state-of-the-art methods [10,12,36] have arti-

acts such as bent legs (c) and smoothed out joints (b–d). Our

ethod with a fixed neighborhood size of 3 (e) while better pre-

erves details than the traditional ARAP, still fails to preserve the

hapes of hooves well enough (as they should be more rigid) and

omewhat smoothes out the joints (as they should be more flex-

ble). Our method with learned adaptive neighbourhood produces

esults that look natural without such artifacts. 

. Conclusions and future work 

In this paper, we extend the ARAP deformation model from

-ring neighborhoods to general r -ring, which allows a series of
-rigid-as-possible shape deformation, Graphical Models (2017), 
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Fig. 13. Deformation result comparisons with neighborhood sizes automatically learned using (a-b) 7, (c-d) 30 and (e-f) 71 examples from the SCAPE dataset. (a),(c),(e) color 

coding illustrating the neighborhood size, (b),(d),(f) corresponding deformation results. 

Fig. 14. Comparison of deformation using the horse model with our automatic neighborhood size selection and alternative methods. (a) color coding illustrating the neigh- 

borhood size (1–6 corresponding to blue to red), (b) SR-ARAP deformation results [12] , (c) deformation result of [36] , (d) ARAP deformation results [10] , (e) our extended 

3-ring ARAP deformation results, (f) our deformation results using the learned adaptive neighborhood size. 
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natural deformation to be achieved, mimicking objects made up

with different materials. We further consider using spatially vary-

ing neighborhood sizes that adapt to the local rigidity, either spec-

ified manually using an intuitive paintbrush interface, or learned

automatically from a set of deforming shapes. Such adaptive neigh-

borhood sizes help to further improve flexibility and allow more

natural deformations to be achieved. 

Our current implementation is purely CPU-based. Although

with OpenMP-based multithreading, it is sufficient for interactive

deformation, it still cannot run in real time. The algorithm can po-

tentially be further optimized by GPGPU computing. The local op-

timization of estimating the local rigid rotations R i and the global

optimization of solving the predecomposed equations can be par-

allelized by GPGPU. 
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