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Deformation transfer is an important research problem in geometry processing and computer animation. A
fundamental problem for existing deformation transfer methods is to build reliable correspondences. This is
challenging, especially when the source and target shapes differ significantly and manual labeling is typically
used. We propose a novel deformation transfer method that aims at minimizing user effort. We adapt a bi-
harmonic weight deformation framework which is able to produce plausible deformation even with only a few

MSC: key points. We then develop an automatic algorithm to identify a minimum set of key points on the source model

00-01
99-00

that characterizes the deformation well. While minimal user effort is still needed to specify corresponding points
on the target model for the selected key points, our approach avoids the difficult problem of choosing key points.

Experimental results demonstrate that our method, despite requiring little user effort, produces better de-
formation results than alternative solutions.

1. Introduction

Shape deformation is a fundamental problem in computer anima-
tion and shape modeling. With the aim of generating realistic shapes,
various approaches have been proposed, including skeleton rigging,
shape deformation [1,2] and deformation transfer [3,4]. Skeleton rig-
ging is suitable for shapes such as human bodies with a well-defined
skeletal structure. Shape deformation is more flexible, but often re-
quires specifying and moving a group of handles to produce a deformed
shape. To produce a deformation sequence, it not only requires
knowledge and expertise, but it is also tedious to produce each de-
formed shape.

When some deformed shapes are available, deformation transfer
makes it possible to transfer the deformation of source shapes to target
shapes, effectively reusing existing deformations. This makes it much
more efficient to produce new deformed shapes, while avoiding the
requirement of having shape deformation expertise. Previous work for
deformation transfer mainly focuses on improving deformation transfer
quality and extending it to handle general shapes and large deforma-
tion. Another key step for deformation transfer is finding reliable cor-
respondences. However, this step is challenging, especially when the
source and target shapes differ significantly (e.g. transferring the de-
formation of a human to an armadillo). In such cases, correspondences
are either manually specified, or even if some semi-automatic algo-
rithms are used, constraints of key correspondences are still required to

* Corresponding authors.
E-mail addresses: gaolin@ict.ac.cn (L. Gao), xsh@ict.ac.cn (S. Xia).

https://doi.org/10.1016/j.gmod.2018.05.003

Received 10 February 2018; Received in revised form 28 April 2018; Accepted 16 May 2018

Available online 22 May 2018
1524-0703/ © 2018 Elsevier Inc. All rights reserved.

be specified by the user. However, specifying a set of sufficient and
effective correspondences requires expertise, including understanding
of the underlying deformation transfer technique. In practice, this is
often achieved using a trial-and-error approach where further corre-
spondences are added if the user is unsatisfactory with the deformation
transfer results.

In this paper, we propose a novel approach to deformation transfer
with automatic key point selection. Given a source shape and one or
more deformed source shapes, as well as a target shape, deformation
transfer produces the same number of deformed shapes with the same
geometry as the target shape and the deformation of the deformed
source mesh transferred. Our major observation is that while it is dif-
ficult for an ordinary user with little experience to understand which
correspondences are most effective, it is intuitive for users to specify the
semantically meaningful point on the target shape that corresponds to a
given point on the source shape. By producing a small set of essential
key points, users are only required to specify their corresponding points
on the target shape. Therefore, our technique can greatly reduce the
time and expertise needed for deformation transfer. To the best of our
knowledge, this is the first work that addresses the problem of auto-
matic key point selection for deformation transfer. To achieve this, we
adapt biharmonic weight shape deformation [5,6] to solve the problem
of deformation transfer, with improved clustering and an error cost
suitable for deformation transfer. Extensive experiments show that our
method outperforms state-of-the-art deformation transfer methods, and
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our automatically selected key points are more effective than those
selected by ordinary users.

In the following sections, we first review the most related work to
ours in Section 2. Algorithm details are then presented in Section 3,
followed by experimental results and discussions in Section 4. Finally,
we draw conclusions in Section 5.

2. Related work

Shape deformation has received significant attention and many
techniques have been developed to improve the representation cap-
ability to handle large-scale deformation, and utilize examples to pro-
duce better deformation results [7]. Please refer to [1,2] for surveys of
different deformation techniques. The recent work [8] develops an
automatic method to deform meshes of arbitrary shapes to obtain their
polycube form. The work [9] proposes a smooth, interpolating re-
presentation for shapes with spherical topology, and demonstrates its
use for surface deformation. Many practical problems involve shape
deformation. The work [10] studies stain formation and evolution on
deforming cloths, and [11] exploits shape deformation for surgical si-
mulation. In order to improve realism, physics-based methods [12,13]
are also developed for shape deformation. In this work, we focus on
transferring deformation from one shape to another, taking a simpler
and more efficient data-driven geometry-based approach.

Global rigid transformation is not suitable when non-rigid de-
formation is involved. Instead, deforming the shape locally rigidly helps
keep details while producing rich deformation results. The As-Rigid-As-
Possible (ARAP) deformation energy is based on this idea, and has been
widely used in geometric processing, such as shape manipulation
[14-17] and shape interpolation [18,19]. Recent work [15] extends As-
Rigid-As-Possible (ARAP) to anisotropic ARAP which is direction de-
pendent, and can solve an important problem of flattening functional
compression garments. Our work is based on [6], which is efficient and
allows plausible deformation results to be produced, even with sparse
key points.

We now focus on reviewing existing deformation transfer techni-
ques which are most related to our work. In the pioneering work [3],
the deformations of shapes are encoded using deformation gradients in
local regions. With reliable correspondences between the source shape
and the target shape, the deformation gradients are transferred to the
target shape, which are then used to reconstruct the deformed target
shape by solving Poisson equations. The method relies on accurate
correspondences to work effectively, and requires quite a large number
of correspondences due to the local nature of deformation gradients. In
addition to transferring deformation, the deformation transfer results
obtained using the above method may also contain geometric details
from the source shape, which is undesirable and may produce un-
reasonable shapes. The work [20] improves over [3,21] by adding an
additional step of projecting the resulting shape to the manifold of
plausible target shapes. The method however requires a set of target
shapes that sufficiently covers the plausible deformation space, which is
not always available.

The methods above can only handle triangle meshes. In order to
deal with general shapes, cages (i.e. a set of polyhedra to enclose the
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shapes) are employed to handle different shape representations such as
triangle soups and tetrahedron meshes [22,23]. These two works need
extra effort to generate suitable cages which is not only time-consuming
but also requires experience and expertise. Moreover, cages are sensi-
tive to topological change and topological proximity of the models. For
example, two points with a large geodesic distance can be close in
Euclidean space, and so may be enclosed in the same cage and therefore
deformed in the same way, which leads to unnatural deformation re-
sults. To deal with shapes with multiple components where each
component is a manifold surface, an alternate solution is proposed
using a graph structure to represent the general shapes for transferring
the deformation gradients on the graph node [24]. This method re-
quires the multi-component structure to be provided, and thus is not
suitable for shapes without multiple components.

Instead of specifying correspondences on shapes, Baran et al. [4]
propose a semantic deformation transfer method by exploiting the
correlation between two shape sets (source and target). They assume
that the source and target shape sets contain corresponding shapes with
the same semantic meaning. Each deformed source shape is projected
onto the source shape set, and the obtained combination weights are
used along with the target shape set to produce the deformed target
shape corresponding to the given source shape. The method achieves
impressive results. However, it requires source and target shape sets
with corresponding semantics as input which are only available in
limited situations.

In this work, we address the problem of deformation transfer of
meshes with the aim of significantly reducing user effort. Our method
only requires one target shape as input, and does not require proxies
such as cages. We generalize an efficient deformation method based on
biharmonic weights to deformation transfer as it produces plausible
results even with very few correspondences. We then develop an au-
tomatic key point selection algorithm such that the user is only required
to specify points on the target shape corresponding to the key points
that were produced automatically on the source shape, which is in-
tuitive for ordinary users. Experimental results show that our method
not only reduces user effort but also produces much better deformation
transfer results than using correspondences specified by normal users,
thanks to the effective choice of key points.

3. Our algorithm
3.1. Algorithm overview

The input to our algorithm is a source mesh A before deformation, a
set of deformed source meshes .#’, and a target mesh B, our deforma-
tion transfer algorithm produces a set of deformed target meshes %"'.
For each mesh A € ., a deformed target mesh B’ is obtained by ap-
plying the deformation from A to A’ to the target shape B. Denote by
m = |.o/’| the number of deformed source meshes. Note that in the
simplest case, .o7" may only contain one deformed shape (i.e. m = 1).
Note that A and meshes in .o’ share the same mesh connectivity, but
the mesh topology of the source and target shapes can be different.

The pipeline of our algorithm is illustrated in Fig. 1. We first obtain
a set of vertices on the source mesh as candidates for key points

) User specify
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Fig. 1. The pipeline of our algorithm.
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(denoted as C), by performing farthest point sampling [25,26] to ensure
candidate points provide sufficient coverage of the shape. Denote by
n. = |C| the number of candidate points. Although depending on the
random choice of the first candidate key point, farthest point sampling
may generate different sets of candidate key points, our method pro-
duces very similar deformation transfer results even with substantially
different candidate key points, as shown by the example in Fig. 2.

The key points S are then selected from the candidate set C. Denote
by nx the number of selected key points. Since the correspondences
between the source and target meshes are not yet available and it is
difficult to automatically judge the quality of deformed meshes, we take
a practical approach aiming to find a key point set S that minimizes
total deformation error from A to each mesh A’ € .o". A trivial solution
would consider all the subsets of C as S and choose the best solution.
This however involves 2" — 1 combinations and is prohibitively ex-
pensive. We propose to use a greedy approach, such that at each step,
only one key point is optimized. Since initially only one or a few key
points are selected and treated as handles to deform A towards models
A € .o/, deformation methods based on local deformation gradients
(e.g. [3,21,27]) do not work well. We thus adapt the deformation
method [6] with bounded biharmonic weights [5], by utilizing the
deformed source shapes .o#’ as constraints such that the deformed
shapes are close to the desired shapes. Several energy functions used in
shape deformation typically measure some forms of elastic shape dis-
tortion. As pointed out in the survey [28], using quadratic energies
leads to linear optimization problems, which are robust and efficient to
optimize, but result in linearization artifacts in the deformation results.
So nonlinear energies [27,29-31] are proposed to provide higher-
quality deformation results, but they are generally slow to optimize. We
use as-rigid-as-possible [14,27,31,32] deformation along with clus-
tering of the biharmonic weights to achieve high quality deformation
while ensuring efficiency. Moreover, the deformations of neighboring
vertices are highly correlated, so it is unnecessary to compute local
rotation for each edge independently. Instead, by clustering local ver-
tices into some clusters based on biharmonic weights, local regions are
deformed consistently, which helps with both efficiency and deforma-
tion quality. We incrementally add or update key points until con-
vergence. The user is then asked to specify points on B that correspond
to the automatic selected key points S on A. Finally, the resulting mesh
B’ with the deformation transferred is obtained using biharmonic
weight-based mesh deformation using affine transformation of corre-
sponding key points from the source mesh.

Graphical Models 98 (2018) 1-13

Fig. 2. Comparison of deformation transfer
results using different randomly initialized
candidate key points. Left: the source mesh and
the target mesh, right: deformation results.
Every column shows a different set of ran-
domly initialized candidate key points, our
selected key points and corresponding de-
formation results. Similar deformation results
are obtained even if the candidate key points
are significantly different.

An example is shown in Fig. 3. We first apply farthest point sam-
pling on the source mesh A and the candidates n, = 100 are shown in
Fig. 3 (a) and (b). They are well distributed, providing a sufficient set to
choose key points from. The selected key points using our automatic
algorithm are shown in Fig. 3 (c) and (d), and are effective in achieving
the deformation from the original shape (a) (b) to the deformed shape
(©) (.

3.2. Shape deformation using biharmonic weights

As a building block in our algorithm, we now introduce a shape
deformation method using biharmonic weights. Since it is used for
deforming both source shapes (for optimization of key points) and
target shapes (for deformation transfer), we describe the algorithm
using a generic set of symbols. Given an input mesh before deformation
2, let 2 be the deformed mesh. p, € 2 and q; € 2 are the positions of
the ith vertex of the mesh # and 2 respectively. Both meshes have the
same connectivity. Denote by n, = || the number of vertices of both
meshes. For the purpose of deformation, assuming .7 is the set of
handle vertices, and n;, = |.#] is the number of handles. For each handle
he € A, it is associated with an affine transformation T, € R34, For
simplicity, these affine transformations are packed into a matrix T of
size 12ny, X 1 (column vector) by stacking each affine transformation as
a 12-dimensional column vector. When applying the deformation
method to source meshes, the deformed mesh is known, and denoted as
2" with q; representing the ith vertex of the known deformed mesh.

Similar to [6], the position of vertices on the deformed mesh 2 can
be computed by applying affine transformations T with linear blend
skinning. Denote by W € R"»*" the skinning weights, where Wy, is the
influence that the hth handle has on the pth vertex. The skinning
weights can be defined in many ways, including manually specified by
artists. In our implementation, we use the bounded-biharmonic weight
[5], which is known to be suitable for deformation. Following [5], we
compute the bounded-biharmonic weights with the optimization below:

nh
. 1 )
arg min kz_:] ELG/ [|Awy |*dp

Wk

subject to: wk(pj) = Jj

1j
D wi(p) =1

k=1
0<w(P) <L k=1,-,np

Vpe?

Vpe? @
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Fig. 3. An example demonstrating candidate points and selected key points for deforming from (a) (b) to (c) (d). (a) and (b) are the candidates obtained using farthest
point sampling (front and back views, with n, = 100 candidate points), (c) and (d) are the key points automatically selected by our algorithm (front and back views,

n, = 12 key points).

where Wy, = wy (pj) is the skinning weight of the jth vertex of the mesh
w.r.t. the kth handle vertex of the mesh, wy is a function over the space
in which the mesh is embedded, and §j is Kronecker’s delta (5 = 1 if
j = k and 0 otherwise). This is consistent with [5]; please refer to the
paper for more details.

Using linear blend skinning, the ith vertex position q; of the de-
formed mesh 2 is given as follows:

h
q; = z VVika[lii]

k=1

@

To measure the quality of deformation, following [6], we use an as-
rigid-as-possible (ARAP) energy [27] Eq.q with deformed positions
obtained using Eq. (2). To better preserve (near) piecewise rigidity and
avoid over-fitting, the shape is partitioned into a set of regions ¥ = {%},
g=1,2, ]9 and |¥| is the number of regions (treated as edge
groups). The details of the partitioning algorithm will be introduced in
Section 3.3. A local rotation matrix R, is assigned for each region .
The energy can be written as:

Earap = 2 Z W)Lj H(qz - qj) - Rg(pi - pf))Hz
g ()e%g 3

where #j; is a cotangent weight [33] which is useful for meshes with
irregular triangulation, and Ry € SO(3) is the rotation of the edge
group g.

For source meshes, since the deformed mesh 2’ is known, we further
introduce another energy term that measures the difference of the mesh
obtained by the deformation and the known deformed mesh. This pe-
nalizes meshes that deviate too much from the known results.

p
Egy = z llg; — q;If
i=1 g @
The overall energy is obtained by a linear combination of both en-
ergy terms:

E = AEqqp + Eqifys )

where A is a weight to balance the two terms. We set 1 = 0.5 in our
experiments. The energy aims to make the resulting mesh as close as
possible to the known deformed mesh, while keeping the local shapes
by reducing the ARAP energy. As we will show later, this helps to
identify better transformations to better reproduce the deformed mesh,
and thus helps improve deformation transfer results. The unknowns in
this function include affine transformation Ty of each handle h;, and
rotation matrix R, for each edge group g of the mesh. Note that the

deformed mesh 2 is determined once the affine transformations T are
given. We alternately optimize T and R; see Section 3.4 for details of the
optimization.

3.3. Clustering with skinning weights and rotation

As suggested by [6], we can obtain a segmentation of the mesh by
using k-means clustering on the skinning weight matrix W, as it shows
how different handles contribute to the deformation of each vertex. The
clustering of shapes is derived from the result of key point selection.
The number of clusters is the same as the number of key points, i.e. we
set the number of clusters to ny,. The clustering helps identify regions of
the mesh with consistent deformation transformation. For deformation
transfer, we also have a set of deformed source meshes .o7’. It is
therefore possible to exploit the local rotations of these meshes, to help
identify regions with consistent deformation. This provides useful ad-
ditional information not available from W.

To achieve this, for each mesh A € .o7’, we first compute the local
deformation gradient D; for the ith vertex of A’, which is calculated by
minimizing the following energy:

E(MD) = ) @ le] - DieflP

JeNi (6)
where N; is the 1-ring neighbors of the vertex i, el: =q;, — q; and
el =p, — p;- The deformation gradient D; can be decomposed into the
product of a rotation matrix and a scale/shear matrix by polar de-
composition [35]:

D; = UN; ()

where U; is a 3 x 3 rotation matrix and N; is a 3 X 3 symmetric matrix
that represents the scaling/shear on the three orthogonal axes. Then the
rotation matrix can be mapped to space so(3) by the matrix logarithm
operation: U; = log U, which is known to make the space more linear.
Because the matrix U is a skew-symmetric matrix, we can rewrite the U
in the space so(3) that consists of three orthogonal basis vectors [36]:

U=uPe; +ue, + ules 8)
where

0 10 0 01 00 O
e=|-100]|],e=]0 0 O0|],es=]00 1

0 00 -100 0-10 )

and u®, u®, and u® € R. We then obtain a vector u; for each vertex:
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(2) (b) © (d

u = (ui(l), ui(Z); ui(S)) (10)

Similarly, the scaling/shear matrix can be rewritten as a long vector

s = (ni(l), ni(Z)’__,,niG))

1)

The rotation logarithm matrix logr for a deformed mesh is defined
as:

logr = [l W - WyJ7 12

and the scaling/shear matrix s for a deformed mesh is defined as:
s = [sl Sy snp]T

(13)

where 1, is the number of vertices. We collect all these matrices cor-
responding to meshes in .7’ as

logr = [logr,, logr,, -, logr, ], §=[s, 83,*,8p] 14

where logr; and s; are the logr and s matrices for the jth model of ..
Finally, we augment W as follows:

ylogr

W = [W logr

vm (15)
J/m is used for normalization since the k-means clustering uses squared
Euclidean distance.

Fig. 4 shows a comparison of clustering results using W and W’ on
the SCAPE dataset [34]. It can be seen that the segmentation obtained
using W (Fig. 4b) does not always represent the correct rigid compo-
nents and the boundaries of segments can also be inaccurate. When
using the rotation/scaling alone without W, the segmentation is quite
noisy (Fig. 4c). By using our augmented matrix W’ combining both
biharmonic weights W and rotation/scaling (logr and s), the result is
significantly better even with only one deformed example (Fig. 4d), and
further improved with the whole dataset (Fig. 4e). yiogr and ys are the
adjustable parameters, and by default we choose ¥, = 1, % = 0.1.

3.4. Algorithmic solution of our deformation method

Similar to [6,27], the optimization of our deformation method can
also be solved by alternating two steps, namely the Global Step and the
Local Step.

In the Global Step, we fix R, for each edge group, and optimize the

energy E to obtain deformed positions q;. For the as-rigid-as-possible

(ARAP) energy, we set a%’_"” =0, and Eq. (3) can be rewritten as a

system of linear equations

Graphical Models 98 (2018) 1-13

Fig. 4. K-means clustering on the biharmonic
weight matrix W and rotation-augmented
weight matrix W’. The number of clusters n, is
set to 13. (a) shows the handle points selected
by the user. (b) is the result of k-means clus-
tering on W, (c) is the result of k-means clus-
tering only based on logr and s without W
using the 55th model in the SCAPE dataset as
the deformed source shape, (d) is the result of
k-means clustering on W’ including W, logr
and s using the 55th model in the SCAPE da-
taset, (e) is the result of k-means clustering on
W of all the 71 models in the SCAPE dataset
[34].

©

Z z Wy(q; — q)

8 (i‘i)EWg

= Z Z Wy Re(p; — Pj)
g (i)e% (16)
Eq. (16) can be written in a matrix form as:

Lq=Db 17)

T
where L is the Laplace matrix, q = | q,, oy, is the deformed posi-

tions to be determined, and b is the right hand side coefficients.
To minimize E, we add the terms related to Egy to Eq. (17) and
obtain the following linear system:

][

where I is the n-dimensional identity matrix, and q’ is the vertex po-
sition of the known deformed source model.

Next, we put Eq. (2) into Eq. (18), and obtain the following equa-
tions:

(18)

D W1ka(1;1)
b,
AL 2 Wszk[ 1 ) _|4b
I q
P,
Ek WnPka[ np)
i L] 19)
Eq. (19) can be further represented as:
SMT = b/ (20)
where S = AL

I ] M is a (3n,) X (12ns) sparse matrix, b” is the right

hand side of Eq. (18), and T € R'?**! (a column vector) contains all the
affine transformations. We can pre-compute SM and obtain its LU de-
composition to accelerate solving Eq. (20), and obtain T needed for
deformation transfer.

The second step is the Local step. Given T, we can obtain the vertex
position of the deformed mesh q using Eq. (2). We then find the optimal
R, for each edge group g. Let us denote the edge vector ef: =q; — q; and
ef: =p, — p;. Minimizing Eq. (5) can be solved independently. For edge
group g, this is achieved by maximizing the following:
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Table 1

Statistics of running times of automatic key point selection and deformation
transfer. SWT/h is the time of calculating skinning weights per handle. In the
last column of the table, the LBS Time is the time for linear blend skinning, i.e.
calculating Eq. (2).

Figure  Source Target Key Point SWT/h (s) LBS Time
(#V/#F) (#V/#F) Selection (hours) (ms)

Fig. 5 2161/4318  4502/9000 0.2831 1.342 0.58

Fig. 9 2752/5500 6890/ 0.1452 4.164 1.3
13776

Fig. 13 2161/4318  4526/9028  0.2085 1.664 0.47

Fig. 10  2502/5000 5012/ 0.6938 1.888 0.78
10000

Fig. 15 1127/2129 5050/9999  0.084 1.856 0.31

Fig. 11 2502/5000 5002/ 0.2957 2.138 1.1
10000

Fig. 12 1856/3708 2161/4318 0.0534 0.448 0.098

T
argmax Tr| R, Z wyefel
Rg (O 21

where Tr(-) is the matrix trace. According to [27], the above optimi-
zation has a closed form solution and the optimal R, can be obtained
using singular value decomposition (SVD). Let us denote
A ~ T . N ~a

S, = Z(z‘;)egg wyefel . Then, using SVD, S; = U,%,V;. R, can be ob-
tained as \Algﬁg. If the resulting R, does not satisfy det Rg > 0, we negate
it to ensure the obtained matrix is a rotation matrix (rather than a
mirrored matrix). We alternate the Global Step and the Local Step until
convergence (i.e. the energy stays stable).

3.5. Automatic key point selection

Automatic key point selection aims to find a subset S C C from the
candidate set C. To make the problem tractable, we use a greedy ap-
proach. The algorithm works in two stages. In the first stage, we in-
crementally add new candidate key point to S, and in the second stage,
we try to improve existing key points in S.

In the first stage, we start by setting S = {c;}. Since we will later
update key points in the set, the choice of the first key point does not
usually affect the results. We then iteratively add a new key point c, to
S, which is the one that leads to the minimum energy:

-1 ,
E=—min Y [Dsye)(A) — All,.,

mnpeec-s g=, (22)
where Ds(-) is an operator that produces the deformed mesh with S as
key points, n, is the number of vertices, and m is the number of models.
The process repeats until the resulting energy E is sufficiently small
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(under a threshold € = 0.03, where the models are scaled consistently to
fit into a unit sphere). The normalization makes the same error
threshold applicable to a wide range of datasets.

In the second stage, we try to replace each selected key point in
turn. For key point c,€ S, we aim to find the best replacement while
keeping other key points unchanged:

¢t= argmin ) [Ds_iquiey(A) — Al
cjeC—Sufctt Ae,o’ (23)
We then replace ¢, with ¢*. This process guarantees the error is non-
increasing, as if no better alternative exists, ¢, will remain unchanged.
This repeats until no further improvement can be found.
The pseudocode of the algorithm is summarized in Algorithm 1.

3.6. Deformation transfer

After automatic key point selection, we use the method [6] to obtain
the transformation T associated with each key point to deform the
source mesh A to its deformed shape A. Then we ask users to select key
points on the target reference mesh B corresponding to the auto-
matically selected key points on A. Once this is done, we directly apply
the transformation matrix T of each key point from the source reference
mesh A to the corresponding point of the target reference mesh B, and
use the method [6] again to obtain the deformed mesh B’ by Eq. (2).

4. Results and evaluation

Our experiments were carried out on a computer with an Intel i7-
6850K CPU and 16GB RAM. The algorithm complexity w.r.t. the
number of candidate sample points n, is O(n2). Since the calculation of
errors with a different added key point can be performed in-
dependently, we parallelize the algorithm using OpenMP. The running
times for key point selection, biharmonic weight calculation and de-
formation transfer for different examples in the paper are reported in
Table 1. The key point selection process takes between a few minutes to
about half an hour, whereas the deformation transfer is under a minute.
Note that key point selection can be considered as an offline pre-
processing step so the running time is acceptable.

We used various datasets to compare with the existing research
[3,22]. These various datasets come from [3] (Horse, Flamingo), SCAPE
[34], TOSCA [25] (Dog, Gorilla, Micheal), MPI DYNA [37] (Fig. 14),
MPI FAUST [38] (Fig. 9), FaceWareHouse [39] (Fig. 15), Cactus and
Armadillo. When compared with [22], we used the released code. In
this section, we will show various examples to demonstrate the per-
formance of our method and compare it with the existing state-of-the-
art methods.

Fig. 5 shows the results of transferring human deformation from the
SCAPE dataset to the Armadillo model. It can be seen that the human

Fig. 5. Results of transferring the de-
formation on the source mesh (a
human from the SCAPE dataset) onto a
different target mesh (the Armadillo
model) using our method with auto-
matic key point selection.
Correspondences are highlighted using
colored balls where the same color in-
dicates corresponding points. The first
column contains the source and target
meshes without deformation. The first
row shows the source meshes and the
second row gives the output meshes.
The deformations of input meshes are
reproduced successfully on the target
mesh, even with substantial geometric
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Number of selected key points

Fig. 6. The Euclidean distance between A” and the deformed A using the example in Fig. 5. The Euclidean distance decreases quickly and converges with a small

number of key points.

Reference

Source

Target

Fig. 7. Comparison of deformation results (top row) and deformation transfer results (bottom row) without (a) and with (b) the Egy term.

and armadillo models differ significantly in geometry, and our method
with automatic key point selection effectively produces high-quality
deformation transfer results with a very sparse set of correspondences
(highlighted as colored balls). We further show the Euclidean error with
an increasing number of key points selected in Fig. 6. It shows that the
energy decreases quickly and converges with a small number of key
points. To show the effect of incorporating Egy for deformation
transfer, we compare the results (a) without and (b) with this term in
Fig. 7. The top row shows the deformation of the source model. The Egys
term helps to make the deformation result much closer to the given
deformed source shape A’. As a result, this also helps improve the de-
formation transfer result (bottom row).

To evaluate the effectiveness of key point selection, we performed a
user study. 10 participants were involved in the user study where they
were asked to choose ny correspondences manually. Results for the

human to armadillo transfer example are shown in Fig. 8. The de-
formation transfer result using our deformation transfer framework but
with manual correspondences performs significantly worse than the
result with our automatically selected key points, with obvious arti-
facts, including distortions and dissimilarity of poses. Our automatic
key point selection not only reduces user effort but produces much
more realistic deformation transfer results.

We further evaluate how our key point selection copes with a larger
set of deformed source shapes .«7’. Fig. 9 shows an example based on the
MPI DYNA dataset. The results from left to right show key points se-
lected with more shapes added to .«7’. It can be seen that the selected
key points are updated to reflect the needs of newly added shapes.

We also compare our deformation transfer method with state-of-the-
art deformation transfer methods [3,22] using a variety of examples
(Figs. 10-13). These examples are challenging as the source and target



J. Yang et al. Graphical Models 98 (2018) 1-13

User1 User2 User3 Userd User5

R
HAAA
A

Reference

> =
> =3

Source

\

User6 User7 User8 User9 User10
Fig. 8. Comparison of deformation transfer results obtained with automatic key point selection and user manual selection.

Fig. 9. Deformation transfer results on sequences of the MPI DYNA dataset. From left to right, we incrementally add new shapes to .«/’. The bottom row shows the key
points that are selected by our algorithm with increasingly large .o/".
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Fig. 10. Results of transferring the deformation of a horse to a dog. The first column shows the source and target meshes with correspondences highlighted. Top row:

source meshes, second row: the results of [3], bottom row: our results.

Reference

Source

[Sumner et al. 2004]

Our

KA1
£ 4
)

Fig. 11. Results of transferring the deformation of a person to a gorilla. The first column shows the source and target meshes with correspondences highlighted. Top

row: source meshes, second row: the results of [3], bottom row: our results.

shapes differ significantly (e.g. a cactus vs. a person in Fig. 12, and a
person vs. a flamingo in Fig. 13) and contain large deformations. Our
method produces plausible deformation transfer results which are ar-
tifact-free and semantically correct. Alternative methods [3,22] can
create distorted output due to too few correspondences, such as

10

dissimilar deformations from the source deformation and implausible
shapes (e.g. wrongly bent legs of the flamingo). Since the method [22]
uses cages, additional effort is needed to create such cages. For some
examples, cages may include additional parts of the mesh, causing poor
deformation results. Artifacts of these methods are highlighted using
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Reference

[Ben-Chen et al.2009] [Sumner et al. 2004] Source

Our

Fig. 12. Results of transferring the deformation of a cactus to a person. The first
column shows the source and target meshes. Top row: source meshes, second
row: the results of [3], third row: the results of [22], bottom row: our results.

Reference
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Our

Graphical Models 98 (2018) 1-13

red rectangles.

It is generally difficult to provide a quantitative evaluation for de-
formation transfer methods. We use the MPI FAUST dataset which
contains human bodies of different shapes with the same set of poses
(see Fig. 14). We can therefore use it for computing a numerical mea-
sure taking the target shape with desired pose as the ground truth. We
use both our automatically selected key points and the manually spe-
cified ones (the best result out of the 10 participants) and compare
deformation transfer results with our method and alternative methods
[3,22]. We measure the average Euclidean distance between corre-
sponding vertices of the deformation transfer results and the ground
truth. We show the proportion of correspondences (y-axis) within an
error bound (x-axis) of different results. Our method is consistently
better than the alternative methods. Moreover, for our method, our
automatically selected key points outperform user specified key points.

We also show a challenging example of transferring human facial
expressions to a dog (see Fig. 15). Our method is able to produce nat-
ural deformation results even with a large difference of shapes.

5. Conclusions

In this paper, we adapt skinning with biharmonic weights to de-
formation transfer, and provide an automatic method to select effective
key points. According to the amount of deformation and the level of
deformation details, our method adaptively selects a suitable number of
key points, as well as their positions, such that good transfer results are
obtained. Therefore, if the source deformed mesh A has more de-
formation details, more key points will be selected. Nevertheless, the
number of key points required is still less than traditional methods [3].
The aim of our method is to obtain effective deformation transfer with
as few key points as possible. We exploit deformed source meshes to
provide better segmentation and add an additional constraint to ensure
the deformed shape is close to the given deformed source meshes. Our

rk
» T
A
»T

Fig. 13. Results of transferring the deformation of a person from the SCAPE dataset to a flamingo. The first column shows the source and target meshes. Top row:
source meshes, second row: the results of [3], third row: the results of [22], bottom row: our results.
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Fig. 14. Comparison with methods [3,22] on the MPI FAUST dataset. We show the proportion of correspondences (y-axis) within an error bound (x-axis) with results
generated by different deformation transfer methods, as well as automatically and manually selected key points.

Reference

Source

Target

Fig. 15. Deformation transfer results produced using our method showing the expressions on the face transferred to a dog. The face shapes are from the

FaceWareHouse dataset.

deformation transfer method outperforms state-of-the-art methods. We
also provide an effective approach to automatically selecting key
points. Extensive experiments show that this greatly reduces user effort
and produces better deformation transfer results than those manually
specified by normal users. Currently, our key point selection algorithm
is treated as offline preprocessing. In the future we would like to con-
sider more effective optimization approaches to speed up this stage.
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